python数据清洗:缺失值、异常值和重复值的处理
在数据清洗过程中,主要处理的是缺失值、异常值和重复值。所谓清洗,是对数据集通过丢弃、填充、替换、去重等操作,达到去除异常、纠正错误、补足缺失的目的。 01、数据列缺失的4种处理方法 数据缺失分为两种:一种是行记录的缺失,这种情况又称数据记录丢失;另一种是数据列值的缺失,即由于各种原因导致的数据记录中某些列的值空缺。 不同的数据存储和环境中对于缺失值的表示结果也不同,例如,数据库中是Null,Pyt …
在数据清洗过程中,主要处理的是缺失值、异常值和重复值。所谓清洗,是对数据集通过丢弃、填充、替换、去重等操作,达到去除异常、纠正错误、补足缺失的目的。 01、数据列缺失的4种处理方法 数据缺失分为两种:一种是行记录的缺失,这种情况又称数据记录丢失;另一种是数据列值的缺失,即由于各种原因导致的数据记录中某些列的值空缺。 不同的数据存储和环境中对于缺失值的表示结果也不同,例如,数据库中是Null,Pyt …